题目:$x_(1),x_(2),…,x_(n)$为来自总体$X~N(mu,sigma^2)$样本,$barx=(1)/(n)sum_(i=1)^(n)(x_(i)-barx)^2$,若记$s_(1)^2=(1)/(n)sum_(i=1)^(n)(x_(i)-barx)^2$,$s_(2)^2=(1)/(n-1)sum_(i=1)^(n)(x_(i)-barx)^2$,$s_(3)^2=(1)/(n)sum_(i=1)^(n)(x_(i)-mu)^2$,$s^2=(1)/(n-1)sum_(i=1)^(n-1)(x_(i)-mu)^2$,则服从t(n-1)的随机变量是( )
A. $(barx-mu)/(s_(1))sqrt(n-1)$
B. $(barx-mu)/(s_(2))sqrt(n-1)$
C. $(barx-mu)/(s_(3))sqrt(n-1)$
D. $(barx-mu)/(s_(4))sqrt(n-1)$
答案:评论后可见此内容