题目:总体X服从$N(mu,sigma^2)$,$sigma^2$未知,$x_(1),x_(2),…,x_(n)$为样本,$barx=(1)/(n)sum_(i=1)^(n)x_(i)$,$s^2=(1)/(n-1)sum_(i=1)^(n)(x_(i)-barx)^2$,对于假设检验问题,$H_(0):mu=mu_(0)$,应选用的统计量是( )
A. $(barx-mu_(0))/((s)/(sqrt(n )))$
B. $(barx-mu_(0))/((s)/(sqrt(n-1)))$
C. $(barx-mu_(0))/((sigma)/(sqrt(n-1 )))$
D. $(barx-mu_(0))/((sigma)/(sqrt(n)))$
答案:评论后可见此内容